Skip to content

Conversation

pragupta
Copy link
Collaborator

…m op with multiple mutated inputs and None return type. (pytorch#157133)

This is an attempt to fix a memory allocation issue when using torch.compile with a custom layernorm kernel in vllm:

  // In-place fused Add and RMS Normalization.
  ops.def(
      "fused_add_rms_norm(Tensor! input, Tensor! residual, Tensor weight, "
      "float epsilon) -> ()");
  ops.impl("fused_add_rms_norm", torch::kCUDA, &fused_add_rms_norm);

We observed abnormal extra memory allocations with this op enabled using torch.compile: {374E9FCF-FB46-4750-8B60-D31E3ADCE00A} and without this op:
{9BB08EFE-FFE3-4D06-82C0-C70BBE6ADD56}

After investigation, we found that this is because the compiler considers the two buffers for the two mutated inputs Tensor input and Tensor residual should share a same dependency list, which makes it can not reuse the buffer of Tensor input.

buf1.users = [
        NodeUser(node=ExternKernelSchedulerNode(name='op2'), can_inplace=False, is_weak=False),
        NodeUser(node=ExternKernelSchedulerNode(name='op9'), can_inplace=False, is_weak=False),
        NodeUser(node=ExternKernelSchedulerNode(name='op13'), can_inplace=False, is_weak=False),
        NodeUser(node=ExternKernelSchedulerNode(name='op20'), can_inplace=False, is_weak=False),
        NodeUser(node=ExternKernelSchedulerNode(name='op24'), can_inplace=False, is_weak=False),
        NodeUser(node=ExternKernelSchedulerNode(name='op31'), can_inplace=False, is_weak=False),
        NodeUser(node=ExternKernelSchedulerNode(name='op35'), can_inplace=False, is_weak=False),
        NodeUser(node=ExternKernelSchedulerNode(name='op42'), can_inplace=False, is_weak=False),
        NodeUser(node=ExternKernelSchedulerNode(name='op46'), can_inplace=False, is_weak=False),
        NodeUser(node=ExternKernelSchedulerNode(name='op53'), can_inplace=False, is_weak=False),
    ]
buf16.users = [
        NodeUser(node=ExternKernelSchedulerNode(name='op2'), can_inplace=False, is_weak=False),
        NodeUser(node=ExternKernelSchedulerNode(name='op9'), can_inplace=False, is_weak=False),
        NodeUser(node=ExternKernelSchedulerNode(name='op13'), can_inplace=False, is_weak=False),
        NodeUser(node=ExternKernelSchedulerNode(name='op20'), can_inplace=False, is_weak=False),
        NodeUser(node=ExternKernelSchedulerNode(name='op24'), can_inplace=False, is_weak=False),
        NodeUser(node=ExternKernelSchedulerNode(name='op31'), can_inplace=False, is_weak=False),
        NodeUser(node=ExternKernelSchedulerNode(name='op35'), can_inplace=False, is_weak=False),
        NodeUser(node=ExternKernelSchedulerNode(name='op42'), can_inplace=False, is_weak=False),
        NodeUser(node=ExternKernelSchedulerNode(name='op46'), can_inplace=False, is_weak=False),
        NodeUser(node=ExternKernelSchedulerNode(name='op53'), can_inplace=False, is_weak=False),
    ]
op13: ExternKernelSchedulerNode(FallbackKernel)
op13.writes =
    [   StarDep(name='buf17', mode=None),
        StarDep(name='buf18', mode=None),
        StarDep(name='buf19', mode=None)]
op13.unmet_dependencies =
    [   StarDep(name='buf13', mode=None),
        StarDep(name='buf16', mode=None),
        WeakDep(name='buf11', mutating_buf='buf18'),
        WeakDep(name='buf12', mutating_buf='buf18'),
        WeakDep(name='buf13', mutating_buf='buf18'),
        WeakDep(name='buf2', mutating_buf='buf18'),
        WeakDep(name='buf3', mutating_buf='buf18')]
op13.met_dependencies = [StarDep(name='arg11_1', mode=None)]
op13.outputs = [
    buf17: FallbackKernel
    buf17.layout = NoneLayout(device=device(type='cuda', index=0), size=[0], stride=[0])
    buf17.aliases = ['buf16', 'buf1']
    buf17.users = [
        NodeUser(node=ExternKernelSchedulerNode(name='op2'), can_inplace=False, is_weak=False),
        NodeUser(node=ExternKernelSchedulerNode(name='op9'), can_inplace=False, is_weak=False),
        NodeUser(node=ExternKernelSchedulerNode(name='op13'), can_inplace=False, is_weak=False),
        NodeUser(node=ExternKernelSchedulerNode(name='op20'), can_inplace=False, is_weak=False),
        NodeUser(node=ExternKernelSchedulerNode(name='op24'), can_inplace=False, is_weak=False),
        NodeUser(node=ExternKernelSchedulerNode(name='op31'), can_inplace=False, is_weak=False),
        NodeUser(node=ExternKernelSchedulerNode(name='op35'), can_inplace=False, is_weak=False),
        NodeUser(node=ExternKernelSchedulerNode(name='op42'), can_inplace=False, is_weak=False),
        NodeUser(node=ExternKernelSchedulerNode(name='op46'), can_inplace=False, is_weak=False),
        NodeUser(node=ExternKernelSchedulerNode(name='op53'), can_inplace=False, is_weak=False),
    ]
    buf18: MutationOutput
    buf18.layout = NoneLayout(device=device(type='cuda', index=0), size=[0], stride=[0])
    buf18.mutations = ['buf16']
    buf18.users = [
        NodeUser(node=ExternKernelSchedulerNode(name='op14'), can_inplace=False, is_weak=False),
        NodeUser(node=ExternKernelSchedulerNode(name='op20'), can_inplace=False, is_weak=True),
        NodeUser(node=ExternKernelSchedulerNode(name='op24'), can_inplace=False, is_weak=True),
        NodeUser(node=ExternKernelSchedulerNode(name='op31'), can_inplace=False, is_weak=True),
        NodeUser(node=ExternKernelSchedulerNode(name='op35'), can_inplace=False, is_weak=True),
        NodeUser(node=ExternKernelSchedulerNode(name='op42'), can_inplace=False, is_weak=True),
        NodeUser(node=ExternKernelSchedulerNode(name='op46'), can_inplace=False, is_weak=True),
        NodeUser(node=ExternKernelSchedulerNode(name='op53'), can_inplace=False, is_weak=True),
    ]
    buf19: MutationOutput
    buf19.layout = NoneLayout(device=device(type='cuda', index=0), size=[0], stride=[0])
    buf19.mutations = ['buf1']
    buf19.users = [NodeUser(node=ExternKernelSchedulerNode(name='op20'), can_inplace=False, is_weak=False)]
]
op13.node.kernel = torch.ops._C.fused_add_rms_norm.default

Here we can see buf16 shares the same dependency list with buf1 because buf16 and buf1 are in the aliases list of buf17. This is incorrect since those two are two separate tensors. And this makes the compiler could not reuse buf16 for subsequent ops.

Pull Request resolved: pytorch#157133
Approved by: https://github.com/jansel

(cherry picked from commit 02724b5)

Fixes #ISSUE_NUMBER

…m op with multiple mutated inputs and None return type. (pytorch#157133)

This is an attempt to fix a memory allocation issue when using `torch.compile` with a custom layernorm kernel in vllm:
```C++
  // In-place fused Add and RMS Normalization.
  ops.def(
      "fused_add_rms_norm(Tensor! input, Tensor! residual, Tensor weight, "
      "float epsilon) -> ()");
  ops.impl("fused_add_rms_norm", torch::kCUDA, &fused_add_rms_norm);
```
We observed abnormal extra memory allocations with this op enabled using `torch.compile`:
<img width="738" alt="{374E9FCF-FB46-4750-8B60-D31E3ADCE00A}" src="https://github.com/user-attachments/assets/6c45e1aa-ccde-4c56-99dc-bf4776d699d5" />
and without this op:
<img width="738" alt="{9BB08EFE-FFE3-4D06-82C0-C70BBE6ADD56}" src="https://github.com/user-attachments/assets/56e2ee43-ab87-492d-834c-69e9cafbb0df" />

After investigation, we found that this is because the compiler considers the two buffers for the two mutated inputs `Tensor input` and `Tensor residual` should share a same dependency list, which makes it can not reuse the buffer of `Tensor input`.
```
buf1.users = [
        NodeUser(node=ExternKernelSchedulerNode(name='op2'), can_inplace=False, is_weak=False),
        NodeUser(node=ExternKernelSchedulerNode(name='op9'), can_inplace=False, is_weak=False),
        NodeUser(node=ExternKernelSchedulerNode(name='op13'), can_inplace=False, is_weak=False),
        NodeUser(node=ExternKernelSchedulerNode(name='op20'), can_inplace=False, is_weak=False),
        NodeUser(node=ExternKernelSchedulerNode(name='op24'), can_inplace=False, is_weak=False),
        NodeUser(node=ExternKernelSchedulerNode(name='op31'), can_inplace=False, is_weak=False),
        NodeUser(node=ExternKernelSchedulerNode(name='op35'), can_inplace=False, is_weak=False),
        NodeUser(node=ExternKernelSchedulerNode(name='op42'), can_inplace=False, is_weak=False),
        NodeUser(node=ExternKernelSchedulerNode(name='op46'), can_inplace=False, is_weak=False),
        NodeUser(node=ExternKernelSchedulerNode(name='op53'), can_inplace=False, is_weak=False),
    ]
buf16.users = [
        NodeUser(node=ExternKernelSchedulerNode(name='op2'), can_inplace=False, is_weak=False),
        NodeUser(node=ExternKernelSchedulerNode(name='op9'), can_inplace=False, is_weak=False),
        NodeUser(node=ExternKernelSchedulerNode(name='op13'), can_inplace=False, is_weak=False),
        NodeUser(node=ExternKernelSchedulerNode(name='op20'), can_inplace=False, is_weak=False),
        NodeUser(node=ExternKernelSchedulerNode(name='op24'), can_inplace=False, is_weak=False),
        NodeUser(node=ExternKernelSchedulerNode(name='op31'), can_inplace=False, is_weak=False),
        NodeUser(node=ExternKernelSchedulerNode(name='op35'), can_inplace=False, is_weak=False),
        NodeUser(node=ExternKernelSchedulerNode(name='op42'), can_inplace=False, is_weak=False),
        NodeUser(node=ExternKernelSchedulerNode(name='op46'), can_inplace=False, is_weak=False),
        NodeUser(node=ExternKernelSchedulerNode(name='op53'), can_inplace=False, is_weak=False),
    ]
```
```
op13: ExternKernelSchedulerNode(FallbackKernel)
op13.writes =
    [   StarDep(name='buf17', mode=None),
        StarDep(name='buf18', mode=None),
        StarDep(name='buf19', mode=None)]
op13.unmet_dependencies =
    [   StarDep(name='buf13', mode=None),
        StarDep(name='buf16', mode=None),
        WeakDep(name='buf11', mutating_buf='buf18'),
        WeakDep(name='buf12', mutating_buf='buf18'),
        WeakDep(name='buf13', mutating_buf='buf18'),
        WeakDep(name='buf2', mutating_buf='buf18'),
        WeakDep(name='buf3', mutating_buf='buf18')]
op13.met_dependencies = [StarDep(name='arg11_1', mode=None)]
op13.outputs = [
    buf17: FallbackKernel
    buf17.layout = NoneLayout(device=device(type='cuda', index=0), size=[0], stride=[0])
    buf17.aliases = ['buf16', 'buf1']
    buf17.users = [
        NodeUser(node=ExternKernelSchedulerNode(name='op2'), can_inplace=False, is_weak=False),
        NodeUser(node=ExternKernelSchedulerNode(name='op9'), can_inplace=False, is_weak=False),
        NodeUser(node=ExternKernelSchedulerNode(name='op13'), can_inplace=False, is_weak=False),
        NodeUser(node=ExternKernelSchedulerNode(name='op20'), can_inplace=False, is_weak=False),
        NodeUser(node=ExternKernelSchedulerNode(name='op24'), can_inplace=False, is_weak=False),
        NodeUser(node=ExternKernelSchedulerNode(name='op31'), can_inplace=False, is_weak=False),
        NodeUser(node=ExternKernelSchedulerNode(name='op35'), can_inplace=False, is_weak=False),
        NodeUser(node=ExternKernelSchedulerNode(name='op42'), can_inplace=False, is_weak=False),
        NodeUser(node=ExternKernelSchedulerNode(name='op46'), can_inplace=False, is_weak=False),
        NodeUser(node=ExternKernelSchedulerNode(name='op53'), can_inplace=False, is_weak=False),
    ]
    buf18: MutationOutput
    buf18.layout = NoneLayout(device=device(type='cuda', index=0), size=[0], stride=[0])
    buf18.mutations = ['buf16']
    buf18.users = [
        NodeUser(node=ExternKernelSchedulerNode(name='op14'), can_inplace=False, is_weak=False),
        NodeUser(node=ExternKernelSchedulerNode(name='op20'), can_inplace=False, is_weak=True),
        NodeUser(node=ExternKernelSchedulerNode(name='op24'), can_inplace=False, is_weak=True),
        NodeUser(node=ExternKernelSchedulerNode(name='op31'), can_inplace=False, is_weak=True),
        NodeUser(node=ExternKernelSchedulerNode(name='op35'), can_inplace=False, is_weak=True),
        NodeUser(node=ExternKernelSchedulerNode(name='op42'), can_inplace=False, is_weak=True),
        NodeUser(node=ExternKernelSchedulerNode(name='op46'), can_inplace=False, is_weak=True),
        NodeUser(node=ExternKernelSchedulerNode(name='op53'), can_inplace=False, is_weak=True),
    ]
    buf19: MutationOutput
    buf19.layout = NoneLayout(device=device(type='cuda', index=0), size=[0], stride=[0])
    buf19.mutations = ['buf1']
    buf19.users = [NodeUser(node=ExternKernelSchedulerNode(name='op20'), can_inplace=False, is_weak=False)]
]
op13.node.kernel = torch.ops._C.fused_add_rms_norm.default
```
Here we can see `buf16` shares the same dependency list with `buf1` because `buf16` and `buf1` are in the aliases list of `buf17`. This is incorrect since those two are two separate tensors. And this makes the compiler could not reuse `buf16` for subsequent ops.

Pull Request resolved: pytorch#157133
Approved by: https://github.com/jansel

(cherry picked from commit 02724b5)
@jithunnair-amd jithunnair-amd changed the title [Bugfix][Inductor] Fix dependency list merged incorrectly for a custo… [release/2.8] [Bugfix][Inductor] Fix dependency list merged incorrectly for a custo… Jul 25, 2025
@jithunnair-amd jithunnair-amd merged commit 3b41cb5 into ROCm:release/2.8 Jul 25, 2025
pragupta added a commit that referenced this pull request Jul 29, 2025
…ly for a custo… (#2419)

…m op with multiple mutated inputs and None return type. (pytorch#157133)

This is an attempt to fix a memory allocation issue when using
`torch.compile` with a custom layernorm kernel in vllm:
```C++
  // In-place fused Add and RMS Normalization.
  ops.def(
      "fused_add_rms_norm(Tensor! input, Tensor! residual, Tensor weight, "
      "float epsilon) -> ()");
  ops.impl("fused_add_rms_norm", torch::kCUDA, &fused_add_rms_norm);
```
We observed abnormal extra memory allocations with this op enabled using
`torch.compile`: <img width="738"
alt="{374E9FCF-FB46-4750-8B60-D31E3ADCE00A}"
src="https://github.com/user-attachments/assets/6c45e1aa-ccde-4c56-99dc-bf4776d699d5"
/> and without this op:
<img width="738" alt="{9BB08EFE-FFE3-4D06-82C0-C70BBE6ADD56}"
src="https://github.com/user-attachments/assets/56e2ee43-ab87-492d-834c-69e9cafbb0df"
/>

After investigation, we found that this is because the compiler
considers the two buffers for the two mutated inputs `Tensor input` and
`Tensor residual` should share a same dependency list, which makes it
can not reuse the buffer of `Tensor input`.
```
buf1.users = [
        NodeUser(node=ExternKernelSchedulerNode(name='op2'), can_inplace=False, is_weak=False),
        NodeUser(node=ExternKernelSchedulerNode(name='op9'), can_inplace=False, is_weak=False),
        NodeUser(node=ExternKernelSchedulerNode(name='op13'), can_inplace=False, is_weak=False),
        NodeUser(node=ExternKernelSchedulerNode(name='op20'), can_inplace=False, is_weak=False),
        NodeUser(node=ExternKernelSchedulerNode(name='op24'), can_inplace=False, is_weak=False),
        NodeUser(node=ExternKernelSchedulerNode(name='op31'), can_inplace=False, is_weak=False),
        NodeUser(node=ExternKernelSchedulerNode(name='op35'), can_inplace=False, is_weak=False),
        NodeUser(node=ExternKernelSchedulerNode(name='op42'), can_inplace=False, is_weak=False),
        NodeUser(node=ExternKernelSchedulerNode(name='op46'), can_inplace=False, is_weak=False),
        NodeUser(node=ExternKernelSchedulerNode(name='op53'), can_inplace=False, is_weak=False),
    ]
buf16.users = [
        NodeUser(node=ExternKernelSchedulerNode(name='op2'), can_inplace=False, is_weak=False),
        NodeUser(node=ExternKernelSchedulerNode(name='op9'), can_inplace=False, is_weak=False),
        NodeUser(node=ExternKernelSchedulerNode(name='op13'), can_inplace=False, is_weak=False),
        NodeUser(node=ExternKernelSchedulerNode(name='op20'), can_inplace=False, is_weak=False),
        NodeUser(node=ExternKernelSchedulerNode(name='op24'), can_inplace=False, is_weak=False),
        NodeUser(node=ExternKernelSchedulerNode(name='op31'), can_inplace=False, is_weak=False),
        NodeUser(node=ExternKernelSchedulerNode(name='op35'), can_inplace=False, is_weak=False),
        NodeUser(node=ExternKernelSchedulerNode(name='op42'), can_inplace=False, is_weak=False),
        NodeUser(node=ExternKernelSchedulerNode(name='op46'), can_inplace=False, is_weak=False),
        NodeUser(node=ExternKernelSchedulerNode(name='op53'), can_inplace=False, is_weak=False),
    ]
```
```
op13: ExternKernelSchedulerNode(FallbackKernel)
op13.writes =
    [   StarDep(name='buf17', mode=None),
        StarDep(name='buf18', mode=None),
        StarDep(name='buf19', mode=None)]
op13.unmet_dependencies =
    [   StarDep(name='buf13', mode=None),
        StarDep(name='buf16', mode=None),
        WeakDep(name='buf11', mutating_buf='buf18'),
        WeakDep(name='buf12', mutating_buf='buf18'),
        WeakDep(name='buf13', mutating_buf='buf18'),
        WeakDep(name='buf2', mutating_buf='buf18'),
        WeakDep(name='buf3', mutating_buf='buf18')]
op13.met_dependencies = [StarDep(name='arg11_1', mode=None)]
op13.outputs = [
    buf17: FallbackKernel
    buf17.layout = NoneLayout(device=device(type='cuda', index=0), size=[0], stride=[0])
    buf17.aliases = ['buf16', 'buf1']
    buf17.users = [
        NodeUser(node=ExternKernelSchedulerNode(name='op2'), can_inplace=False, is_weak=False),
        NodeUser(node=ExternKernelSchedulerNode(name='op9'), can_inplace=False, is_weak=False),
        NodeUser(node=ExternKernelSchedulerNode(name='op13'), can_inplace=False, is_weak=False),
        NodeUser(node=ExternKernelSchedulerNode(name='op20'), can_inplace=False, is_weak=False),
        NodeUser(node=ExternKernelSchedulerNode(name='op24'), can_inplace=False, is_weak=False),
        NodeUser(node=ExternKernelSchedulerNode(name='op31'), can_inplace=False, is_weak=False),
        NodeUser(node=ExternKernelSchedulerNode(name='op35'), can_inplace=False, is_weak=False),
        NodeUser(node=ExternKernelSchedulerNode(name='op42'), can_inplace=False, is_weak=False),
        NodeUser(node=ExternKernelSchedulerNode(name='op46'), can_inplace=False, is_weak=False),
        NodeUser(node=ExternKernelSchedulerNode(name='op53'), can_inplace=False, is_weak=False),
    ]
    buf18: MutationOutput
    buf18.layout = NoneLayout(device=device(type='cuda', index=0), size=[0], stride=[0])
    buf18.mutations = ['buf16']
    buf18.users = [
        NodeUser(node=ExternKernelSchedulerNode(name='op14'), can_inplace=False, is_weak=False),
        NodeUser(node=ExternKernelSchedulerNode(name='op20'), can_inplace=False, is_weak=True),
        NodeUser(node=ExternKernelSchedulerNode(name='op24'), can_inplace=False, is_weak=True),
        NodeUser(node=ExternKernelSchedulerNode(name='op31'), can_inplace=False, is_weak=True),
        NodeUser(node=ExternKernelSchedulerNode(name='op35'), can_inplace=False, is_weak=True),
        NodeUser(node=ExternKernelSchedulerNode(name='op42'), can_inplace=False, is_weak=True),
        NodeUser(node=ExternKernelSchedulerNode(name='op46'), can_inplace=False, is_weak=True),
        NodeUser(node=ExternKernelSchedulerNode(name='op53'), can_inplace=False, is_weak=True),
    ]
    buf19: MutationOutput
    buf19.layout = NoneLayout(device=device(type='cuda', index=0), size=[0], stride=[0])
    buf19.mutations = ['buf1']
    buf19.users = [NodeUser(node=ExternKernelSchedulerNode(name='op20'), can_inplace=False, is_weak=False)]
]
op13.node.kernel = torch.ops._C.fused_add_rms_norm.default
```
Here we can see `buf16` shares the same dependency list with `buf1`
because `buf16` and `buf1` are in the aliases list of `buf17`. This is
incorrect since those two are two separate tensors. And this makes the
compiler could not reuse `buf16` for subsequent ops.

Pull Request resolved: pytorch#157133
Approved by: https://github.com/jansel

(cherry picked from commit 02724b5)

Fixes #ISSUE_NUMBER

Co-authored-by: charlifu <[email protected]>
tvukovic-amd pushed a commit that referenced this pull request Aug 20, 2025
…ly for a custo… (#2419)

…m op with multiple mutated inputs and None return type. (pytorch#157133)

This is an attempt to fix a memory allocation issue when using
`torch.compile` with a custom layernorm kernel in vllm:
```C++
  // In-place fused Add and RMS Normalization.
  ops.def(
      "fused_add_rms_norm(Tensor! input, Tensor! residual, Tensor weight, "
      "float epsilon) -> ()");
  ops.impl("fused_add_rms_norm", torch::kCUDA, &fused_add_rms_norm);
```
We observed abnormal extra memory allocations with this op enabled using
`torch.compile`: <img width="738"
alt="{374E9FCF-FB46-4750-8B60-D31E3ADCE00A}"
src="https://github.com/user-attachments/assets/6c45e1aa-ccde-4c56-99dc-bf4776d699d5"
/> and without this op:
<img width="738" alt="{9BB08EFE-FFE3-4D06-82C0-C70BBE6ADD56}"
src="https://github.com/user-attachments/assets/56e2ee43-ab87-492d-834c-69e9cafbb0df"
/>

After investigation, we found that this is because the compiler
considers the two buffers for the two mutated inputs `Tensor input` and
`Tensor residual` should share a same dependency list, which makes it
can not reuse the buffer of `Tensor input`.
```
buf1.users = [
        NodeUser(node=ExternKernelSchedulerNode(name='op2'), can_inplace=False, is_weak=False),
        NodeUser(node=ExternKernelSchedulerNode(name='op9'), can_inplace=False, is_weak=False),
        NodeUser(node=ExternKernelSchedulerNode(name='op13'), can_inplace=False, is_weak=False),
        NodeUser(node=ExternKernelSchedulerNode(name='op20'), can_inplace=False, is_weak=False),
        NodeUser(node=ExternKernelSchedulerNode(name='op24'), can_inplace=False, is_weak=False),
        NodeUser(node=ExternKernelSchedulerNode(name='op31'), can_inplace=False, is_weak=False),
        NodeUser(node=ExternKernelSchedulerNode(name='op35'), can_inplace=False, is_weak=False),
        NodeUser(node=ExternKernelSchedulerNode(name='op42'), can_inplace=False, is_weak=False),
        NodeUser(node=ExternKernelSchedulerNode(name='op46'), can_inplace=False, is_weak=False),
        NodeUser(node=ExternKernelSchedulerNode(name='op53'), can_inplace=False, is_weak=False),
    ]
buf16.users = [
        NodeUser(node=ExternKernelSchedulerNode(name='op2'), can_inplace=False, is_weak=False),
        NodeUser(node=ExternKernelSchedulerNode(name='op9'), can_inplace=False, is_weak=False),
        NodeUser(node=ExternKernelSchedulerNode(name='op13'), can_inplace=False, is_weak=False),
        NodeUser(node=ExternKernelSchedulerNode(name='op20'), can_inplace=False, is_weak=False),
        NodeUser(node=ExternKernelSchedulerNode(name='op24'), can_inplace=False, is_weak=False),
        NodeUser(node=ExternKernelSchedulerNode(name='op31'), can_inplace=False, is_weak=False),
        NodeUser(node=ExternKernelSchedulerNode(name='op35'), can_inplace=False, is_weak=False),
        NodeUser(node=ExternKernelSchedulerNode(name='op42'), can_inplace=False, is_weak=False),
        NodeUser(node=ExternKernelSchedulerNode(name='op46'), can_inplace=False, is_weak=False),
        NodeUser(node=ExternKernelSchedulerNode(name='op53'), can_inplace=False, is_weak=False),
    ]
```
```
op13: ExternKernelSchedulerNode(FallbackKernel)
op13.writes =
    [   StarDep(name='buf17', mode=None),
        StarDep(name='buf18', mode=None),
        StarDep(name='buf19', mode=None)]
op13.unmet_dependencies =
    [   StarDep(name='buf13', mode=None),
        StarDep(name='buf16', mode=None),
        WeakDep(name='buf11', mutating_buf='buf18'),
        WeakDep(name='buf12', mutating_buf='buf18'),
        WeakDep(name='buf13', mutating_buf='buf18'),
        WeakDep(name='buf2', mutating_buf='buf18'),
        WeakDep(name='buf3', mutating_buf='buf18')]
op13.met_dependencies = [StarDep(name='arg11_1', mode=None)]
op13.outputs = [
    buf17: FallbackKernel
    buf17.layout = NoneLayout(device=device(type='cuda', index=0), size=[0], stride=[0])
    buf17.aliases = ['buf16', 'buf1']
    buf17.users = [
        NodeUser(node=ExternKernelSchedulerNode(name='op2'), can_inplace=False, is_weak=False),
        NodeUser(node=ExternKernelSchedulerNode(name='op9'), can_inplace=False, is_weak=False),
        NodeUser(node=ExternKernelSchedulerNode(name='op13'), can_inplace=False, is_weak=False),
        NodeUser(node=ExternKernelSchedulerNode(name='op20'), can_inplace=False, is_weak=False),
        NodeUser(node=ExternKernelSchedulerNode(name='op24'), can_inplace=False, is_weak=False),
        NodeUser(node=ExternKernelSchedulerNode(name='op31'), can_inplace=False, is_weak=False),
        NodeUser(node=ExternKernelSchedulerNode(name='op35'), can_inplace=False, is_weak=False),
        NodeUser(node=ExternKernelSchedulerNode(name='op42'), can_inplace=False, is_weak=False),
        NodeUser(node=ExternKernelSchedulerNode(name='op46'), can_inplace=False, is_weak=False),
        NodeUser(node=ExternKernelSchedulerNode(name='op53'), can_inplace=False, is_weak=False),
    ]
    buf18: MutationOutput
    buf18.layout = NoneLayout(device=device(type='cuda', index=0), size=[0], stride=[0])
    buf18.mutations = ['buf16']
    buf18.users = [
        NodeUser(node=ExternKernelSchedulerNode(name='op14'), can_inplace=False, is_weak=False),
        NodeUser(node=ExternKernelSchedulerNode(name='op20'), can_inplace=False, is_weak=True),
        NodeUser(node=ExternKernelSchedulerNode(name='op24'), can_inplace=False, is_weak=True),
        NodeUser(node=ExternKernelSchedulerNode(name='op31'), can_inplace=False, is_weak=True),
        NodeUser(node=ExternKernelSchedulerNode(name='op35'), can_inplace=False, is_weak=True),
        NodeUser(node=ExternKernelSchedulerNode(name='op42'), can_inplace=False, is_weak=True),
        NodeUser(node=ExternKernelSchedulerNode(name='op46'), can_inplace=False, is_weak=True),
        NodeUser(node=ExternKernelSchedulerNode(name='op53'), can_inplace=False, is_weak=True),
    ]
    buf19: MutationOutput
    buf19.layout = NoneLayout(device=device(type='cuda', index=0), size=[0], stride=[0])
    buf19.mutations = ['buf1']
    buf19.users = [NodeUser(node=ExternKernelSchedulerNode(name='op20'), can_inplace=False, is_weak=False)]
]
op13.node.kernel = torch.ops._C.fused_add_rms_norm.default
```
Here we can see `buf16` shares the same dependency list with `buf1`
because `buf16` and `buf1` are in the aliases list of `buf17`. This is
incorrect since those two are two separate tensors. And this makes the
compiler could not reuse `buf16` for subsequent ops.

Pull Request resolved: pytorch#157133
Approved by: https://github.com/jansel

(cherry picked from commit 02724b5)

Fixes #ISSUE_NUMBER

Co-authored-by: charlifu <[email protected]>
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

Successfully merging this pull request may close these issues.

3 participants